Data sheet Psi values for windows

based on determination of the equivalent thermal conductivity of spacers by measurement

SWISSPACER®
Vetrotech Saint-Gobain (International) AG
Zweigniederlassung Kreuzlingen
Sonnwiesenstrasse 15
CH-8280 Kreuzlingen

<table>
<thead>
<tr>
<th>Cross-section</th>
<th>Spacer height in mm</th>
<th>Material</th>
<th>Thickness d in mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultimate SWISSPACER</td>
<td>6.5</td>
<td>Plastic / Multilayer – polyester coated film “High Tech Gas Barrier Foil”</td>
<td>1.0 0.097</td>
</tr>
</tbody>
</table>

Representative frame profile

Metal with thermal break

- Double-sheet insulating glass $U_g = 1.1 \, \text{W/m}^2\text{K}$
 - $\lambda_{eq,26}$ $= 0.036$ W/mK
- Triple-sheet insulating glass $U_g = 0.7 \, \text{W/m}^2\text{K}$
 - $\lambda_{eq,26}$ $= 0.031$ W/mK

Plastic

- Double-sheet insulating glass $U_g = 1.1 \, \text{W/m}^2\text{K}$
 - $\lambda_{eq,26}$ $= 0.032$ W/mK
- Triple-sheet insulating glass $U_g = 0.7 \, \text{W/m}^2\text{K}$
 - $\lambda_{eq,26}$ $= 0.030$ W/mK

Wood

- Double-sheet insulating glass $U_g = 1.1 \, \text{W/m}^2\text{K}$
 - $\lambda_{eq,26}$ $= 0.031$ W/mK
- Triple-sheet insulating glass $U_g = 0.7 \, \text{W/m}^2\text{K}$
 - $\lambda_{eq,26}$ $= 0.029$ W/mK

Wood / Metal

- Double-sheet insulating glass $U_g = 1.1 \, \text{W/m}^2\text{K}$
 - $\lambda_{eq,26}$ $= 0.032$ W/mK
- Triple-sheet insulating glass $U_g = 0.7 \, \text{W/m}^2\text{K}$
 - $\lambda_{eq,26}$ $= 0.030$ W/mK

Two box model

<table>
<thead>
<tr>
<th>Space between panes</th>
<th>Space between panes in mm</th>
<th>$\lambda_{eq,26}$ in W/mK</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_1 2</td>
<td>h_2 1</td>
<td>Box 1 $\cdot h_1 = 3 , \text{mm}$</td>
</tr>
<tr>
<td>Can be used for all spacer widths</td>
<td>0.40</td>
<td>0.14</td>
</tr>
</tbody>
</table>

Explanations

The equivalent thermal conductivity has been determined in accordance with the ift guideline WA-17/1 “Thermally improved spacers – Determination of the equivalent thermal conductivity by measurement”. The representative linear heat transfer coefficients calculated in this way (representative psi values) apply to typical frame profiles and glazing for the determination of the heat transfer coefficient U_W of windows. They have been determined under the boundary conditions (frame profiles, glazing, glass mounting depth, back covering, primary and secondary sealant) defined in the ift guideline WA-08/2 “Thermally improved spacers – Part 1: Determination of the representative Psi value for window frame profiles”. This guideline also governs the area of validity and application of the representative psi values. In order to avoid rounding errors, the psi values in the data sheet have been given at 0.001 W/mK. The method for the arithmetical determination of the psi values has an accuracy of ± 0.003 W/mK. Differences of less than 0.005 W/mK are not significant. For further information, refer to the Bulletin 004/2008 “Compass ‘Warm Edge’ for Windows” of Bundesverband Flachglas.